\(\int \frac {x^4 (A+B x^2)}{(a+b x^2)^{3/2}} \, dx\) [571]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 22, antiderivative size = 119 \[ \int \frac {x^4 \left (A+B x^2\right )}{\left (a+b x^2\right )^{3/2}} \, dx=-\frac {(4 A b-5 a B) x^3}{4 b^2 \sqrt {a+b x^2}}+\frac {B x^5}{4 b \sqrt {a+b x^2}}+\frac {3 (4 A b-5 a B) x \sqrt {a+b x^2}}{8 b^3}-\frac {3 a (4 A b-5 a B) \text {arctanh}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )}{8 b^{7/2}} \]

[Out]

-3/8*a*(4*A*b-5*B*a)*arctanh(x*b^(1/2)/(b*x^2+a)^(1/2))/b^(7/2)-1/4*(4*A*b-5*B*a)*x^3/b^2/(b*x^2+a)^(1/2)+1/4*
B*x^5/b/(b*x^2+a)^(1/2)+3/8*(4*A*b-5*B*a)*x*(b*x^2+a)^(1/2)/b^3

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.227, Rules used = {470, 294, 327, 223, 212} \[ \int \frac {x^4 \left (A+B x^2\right )}{\left (a+b x^2\right )^{3/2}} \, dx=-\frac {3 a (4 A b-5 a B) \text {arctanh}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )}{8 b^{7/2}}+\frac {3 x \sqrt {a+b x^2} (4 A b-5 a B)}{8 b^3}-\frac {x^3 (4 A b-5 a B)}{4 b^2 \sqrt {a+b x^2}}+\frac {B x^5}{4 b \sqrt {a+b x^2}} \]

[In]

Int[(x^4*(A + B*x^2))/(a + b*x^2)^(3/2),x]

[Out]

-1/4*((4*A*b - 5*a*B)*x^3)/(b^2*Sqrt[a + b*x^2]) + (B*x^5)/(4*b*Sqrt[a + b*x^2]) + (3*(4*A*b - 5*a*B)*x*Sqrt[a
 + b*x^2])/(8*b^3) - (3*a*(4*A*b - 5*a*B)*ArcTanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]])/(8*b^(7/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 294

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^
n)^(p + 1)/(b*n*(p + 1))), x] - Dist[c^n*((m - n + 1)/(b*n*(p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(b*e*(m + n*(p + 1) + 1))), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {B x^5}{4 b \sqrt {a+b x^2}}-\frac {(-4 A b+5 a B) \int \frac {x^4}{\left (a+b x^2\right )^{3/2}} \, dx}{4 b} \\ & = -\frac {(4 A b-5 a B) x^3}{4 b^2 \sqrt {a+b x^2}}+\frac {B x^5}{4 b \sqrt {a+b x^2}}+\frac {(3 (4 A b-5 a B)) \int \frac {x^2}{\sqrt {a+b x^2}} \, dx}{4 b^2} \\ & = -\frac {(4 A b-5 a B) x^3}{4 b^2 \sqrt {a+b x^2}}+\frac {B x^5}{4 b \sqrt {a+b x^2}}+\frac {3 (4 A b-5 a B) x \sqrt {a+b x^2}}{8 b^3}-\frac {(3 a (4 A b-5 a B)) \int \frac {1}{\sqrt {a+b x^2}} \, dx}{8 b^3} \\ & = -\frac {(4 A b-5 a B) x^3}{4 b^2 \sqrt {a+b x^2}}+\frac {B x^5}{4 b \sqrt {a+b x^2}}+\frac {3 (4 A b-5 a B) x \sqrt {a+b x^2}}{8 b^3}-\frac {(3 a (4 A b-5 a B)) \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {x}{\sqrt {a+b x^2}}\right )}{8 b^3} \\ & = -\frac {(4 A b-5 a B) x^3}{4 b^2 \sqrt {a+b x^2}}+\frac {B x^5}{4 b \sqrt {a+b x^2}}+\frac {3 (4 A b-5 a B) x \sqrt {a+b x^2}}{8 b^3}-\frac {3 a (4 A b-5 a B) \tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )}{8 b^{7/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.31 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.90 \[ \int \frac {x^4 \left (A+B x^2\right )}{\left (a+b x^2\right )^{3/2}} \, dx=\frac {12 a A b x-15 a^2 B x+4 A b^2 x^3-5 a b B x^3+2 b^2 B x^5}{8 b^3 \sqrt {a+b x^2}}+\frac {3 a (-4 A b+5 a B) \text {arctanh}\left (\frac {\sqrt {b} x}{-\sqrt {a}+\sqrt {a+b x^2}}\right )}{4 b^{7/2}} \]

[In]

Integrate[(x^4*(A + B*x^2))/(a + b*x^2)^(3/2),x]

[Out]

(12*a*A*b*x - 15*a^2*B*x + 4*A*b^2*x^3 - 5*a*b*B*x^3 + 2*b^2*B*x^5)/(8*b^3*Sqrt[a + b*x^2]) + (3*a*(-4*A*b + 5
*a*B)*ArcTanh[(Sqrt[b]*x)/(-Sqrt[a] + Sqrt[a + b*x^2])])/(4*b^(7/2))

Maple [A] (verified)

Time = 2.90 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.79

method result size
pseudoelliptic \(\frac {-3 \sqrt {b \,x^{2}+a}\, a \left (A b -\frac {5 B a}{4}\right ) \operatorname {arctanh}\left (\frac {\sqrt {b \,x^{2}+a}}{x \sqrt {b}}\right )+\left (3 \left (-\frac {5 x^{2} B}{12}+A \right ) a \,b^{\frac {3}{2}}+x^{2} \left (\frac {x^{2} B}{2}+A \right ) b^{\frac {5}{2}}-\frac {15 B \,a^{2} \sqrt {b}}{4}\right ) x}{2 \sqrt {b \,x^{2}+a}\, b^{\frac {7}{2}}}\) \(94\)
risch \(\frac {x \left (2 b B \,x^{2}+4 A b -7 B a \right ) \sqrt {b \,x^{2}+a}}{8 b^{3}}-\frac {a \left (-\frac {7 a B x}{\sqrt {b \,x^{2}+a}}+\frac {4 b A x}{\sqrt {b \,x^{2}+a}}+\left (12 b^{2} A -15 a b B \right ) \left (-\frac {x}{b \sqrt {b \,x^{2}+a}}+\frac {\ln \left (x \sqrt {b}+\sqrt {b \,x^{2}+a}\right )}{b^{\frac {3}{2}}}\right )\right )}{8 b^{3}}\) \(117\)
default \(B \left (\frac {x^{5}}{4 b \sqrt {b \,x^{2}+a}}-\frac {5 a \left (\frac {x^{3}}{2 b \sqrt {b \,x^{2}+a}}-\frac {3 a \left (-\frac {x}{b \sqrt {b \,x^{2}+a}}+\frac {\ln \left (x \sqrt {b}+\sqrt {b \,x^{2}+a}\right )}{b^{\frac {3}{2}}}\right )}{2 b}\right )}{4 b}\right )+A \left (\frac {x^{3}}{2 b \sqrt {b \,x^{2}+a}}-\frac {3 a \left (-\frac {x}{b \sqrt {b \,x^{2}+a}}+\frac {\ln \left (x \sqrt {b}+\sqrt {b \,x^{2}+a}\right )}{b^{\frac {3}{2}}}\right )}{2 b}\right )\) \(150\)

[In]

int(x^4*(B*x^2+A)/(b*x^2+a)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/2*(-3*(b*x^2+a)^(1/2)*a*(A*b-5/4*B*a)*arctanh((b*x^2+a)^(1/2)/x/b^(1/2))+(3*(-5/12*x^2*B+A)*a*b^(3/2)+x^2*(1
/2*x^2*B+A)*b^(5/2)-15/4*B*a^2*b^(1/2))*x)/(b*x^2+a)^(1/2)/b^(7/2)

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 274, normalized size of antiderivative = 2.30 \[ \int \frac {x^4 \left (A+B x^2\right )}{\left (a+b x^2\right )^{3/2}} \, dx=\left [-\frac {3 \, {\left (5 \, B a^{3} - 4 \, A a^{2} b + {\left (5 \, B a^{2} b - 4 \, A a b^{2}\right )} x^{2}\right )} \sqrt {b} \log \left (-2 \, b x^{2} + 2 \, \sqrt {b x^{2} + a} \sqrt {b} x - a\right ) - 2 \, {\left (2 \, B b^{3} x^{5} - {\left (5 \, B a b^{2} - 4 \, A b^{3}\right )} x^{3} - 3 \, {\left (5 \, B a^{2} b - 4 \, A a b^{2}\right )} x\right )} \sqrt {b x^{2} + a}}{16 \, {\left (b^{5} x^{2} + a b^{4}\right )}}, -\frac {3 \, {\left (5 \, B a^{3} - 4 \, A a^{2} b + {\left (5 \, B a^{2} b - 4 \, A a b^{2}\right )} x^{2}\right )} \sqrt {-b} \arctan \left (\frac {\sqrt {-b} x}{\sqrt {b x^{2} + a}}\right ) - {\left (2 \, B b^{3} x^{5} - {\left (5 \, B a b^{2} - 4 \, A b^{3}\right )} x^{3} - 3 \, {\left (5 \, B a^{2} b - 4 \, A a b^{2}\right )} x\right )} \sqrt {b x^{2} + a}}{8 \, {\left (b^{5} x^{2} + a b^{4}\right )}}\right ] \]

[In]

integrate(x^4*(B*x^2+A)/(b*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

[-1/16*(3*(5*B*a^3 - 4*A*a^2*b + (5*B*a^2*b - 4*A*a*b^2)*x^2)*sqrt(b)*log(-2*b*x^2 + 2*sqrt(b*x^2 + a)*sqrt(b)
*x - a) - 2*(2*B*b^3*x^5 - (5*B*a*b^2 - 4*A*b^3)*x^3 - 3*(5*B*a^2*b - 4*A*a*b^2)*x)*sqrt(b*x^2 + a))/(b^5*x^2
+ a*b^4), -1/8*(3*(5*B*a^3 - 4*A*a^2*b + (5*B*a^2*b - 4*A*a*b^2)*x^2)*sqrt(-b)*arctan(sqrt(-b)*x/sqrt(b*x^2 +
a)) - (2*B*b^3*x^5 - (5*B*a*b^2 - 4*A*b^3)*x^3 - 3*(5*B*a^2*b - 4*A*a*b^2)*x)*sqrt(b*x^2 + a))/(b^5*x^2 + a*b^
4)]

Sympy [A] (verification not implemented)

Time = 6.84 (sec) , antiderivative size = 177, normalized size of antiderivative = 1.49 \[ \int \frac {x^4 \left (A+B x^2\right )}{\left (a+b x^2\right )^{3/2}} \, dx=A \left (\frac {3 \sqrt {a} x}{2 b^{2} \sqrt {1 + \frac {b x^{2}}{a}}} - \frac {3 a \operatorname {asinh}{\left (\frac {\sqrt {b} x}{\sqrt {a}} \right )}}{2 b^{\frac {5}{2}}} + \frac {x^{3}}{2 \sqrt {a} b \sqrt {1 + \frac {b x^{2}}{a}}}\right ) + B \left (- \frac {15 a^{\frac {3}{2}} x}{8 b^{3} \sqrt {1 + \frac {b x^{2}}{a}}} - \frac {5 \sqrt {a} x^{3}}{8 b^{2} \sqrt {1 + \frac {b x^{2}}{a}}} + \frac {15 a^{2} \operatorname {asinh}{\left (\frac {\sqrt {b} x}{\sqrt {a}} \right )}}{8 b^{\frac {7}{2}}} + \frac {x^{5}}{4 \sqrt {a} b \sqrt {1 + \frac {b x^{2}}{a}}}\right ) \]

[In]

integrate(x**4*(B*x**2+A)/(b*x**2+a)**(3/2),x)

[Out]

A*(3*sqrt(a)*x/(2*b**2*sqrt(1 + b*x**2/a)) - 3*a*asinh(sqrt(b)*x/sqrt(a))/(2*b**(5/2)) + x**3/(2*sqrt(a)*b*sqr
t(1 + b*x**2/a))) + B*(-15*a**(3/2)*x/(8*b**3*sqrt(1 + b*x**2/a)) - 5*sqrt(a)*x**3/(8*b**2*sqrt(1 + b*x**2/a))
 + 15*a**2*asinh(sqrt(b)*x/sqrt(a))/(8*b**(7/2)) + x**5/(4*sqrt(a)*b*sqrt(1 + b*x**2/a)))

Maxima [A] (verification not implemented)

none

Time = 0.19 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.06 \[ \int \frac {x^4 \left (A+B x^2\right )}{\left (a+b x^2\right )^{3/2}} \, dx=\frac {B x^{5}}{4 \, \sqrt {b x^{2} + a} b} - \frac {5 \, B a x^{3}}{8 \, \sqrt {b x^{2} + a} b^{2}} + \frac {A x^{3}}{2 \, \sqrt {b x^{2} + a} b} - \frac {15 \, B a^{2} x}{8 \, \sqrt {b x^{2} + a} b^{3}} + \frac {3 \, A a x}{2 \, \sqrt {b x^{2} + a} b^{2}} + \frac {15 \, B a^{2} \operatorname {arsinh}\left (\frac {b x}{\sqrt {a b}}\right )}{8 \, b^{\frac {7}{2}}} - \frac {3 \, A a \operatorname {arsinh}\left (\frac {b x}{\sqrt {a b}}\right )}{2 \, b^{\frac {5}{2}}} \]

[In]

integrate(x^4*(B*x^2+A)/(b*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

1/4*B*x^5/(sqrt(b*x^2 + a)*b) - 5/8*B*a*x^3/(sqrt(b*x^2 + a)*b^2) + 1/2*A*x^3/(sqrt(b*x^2 + a)*b) - 15/8*B*a^2
*x/(sqrt(b*x^2 + a)*b^3) + 3/2*A*a*x/(sqrt(b*x^2 + a)*b^2) + 15/8*B*a^2*arcsinh(b*x/sqrt(a*b))/b^(7/2) - 3/2*A
*a*arcsinh(b*x/sqrt(a*b))/b^(5/2)

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.87 \[ \int \frac {x^4 \left (A+B x^2\right )}{\left (a+b x^2\right )^{3/2}} \, dx=\frac {{\left ({\left (\frac {2 \, B x^{2}}{b} - \frac {5 \, B a b^{3} - 4 \, A b^{4}}{b^{5}}\right )} x^{2} - \frac {3 \, {\left (5 \, B a^{2} b^{2} - 4 \, A a b^{3}\right )}}{b^{5}}\right )} x}{8 \, \sqrt {b x^{2} + a}} - \frac {3 \, {\left (5 \, B a^{2} - 4 \, A a b\right )} \log \left ({\left | -\sqrt {b} x + \sqrt {b x^{2} + a} \right |}\right )}{8 \, b^{\frac {7}{2}}} \]

[In]

integrate(x^4*(B*x^2+A)/(b*x^2+a)^(3/2),x, algorithm="giac")

[Out]

1/8*((2*B*x^2/b - (5*B*a*b^3 - 4*A*b^4)/b^5)*x^2 - 3*(5*B*a^2*b^2 - 4*A*a*b^3)/b^5)*x/sqrt(b*x^2 + a) - 3/8*(5
*B*a^2 - 4*A*a*b)*log(abs(-sqrt(b)*x + sqrt(b*x^2 + a)))/b^(7/2)

Mupad [F(-1)]

Timed out. \[ \int \frac {x^4 \left (A+B x^2\right )}{\left (a+b x^2\right )^{3/2}} \, dx=\int \frac {x^4\,\left (B\,x^2+A\right )}{{\left (b\,x^2+a\right )}^{3/2}} \,d x \]

[In]

int((x^4*(A + B*x^2))/(a + b*x^2)^(3/2),x)

[Out]

int((x^4*(A + B*x^2))/(a + b*x^2)^(3/2), x)